SUMMARY

The intramolecular nucleophilic displacement with WALDEN inversion of the 11α -tosyloxy group in 18,20-lactones of the pregnane series is described. Depending upon the reaction conditions $18,11\beta$ -lactones or orthoester derivatives are obtained.

Forschungslaboratorien der CIBA AKTIENGESELLSCHAFT, Basel, Pharmazeutische Abteilung

171. Protonenresonanzspektroskopie und Steroidstruktur I. Das C-19-Methylsignal in Funktion der Substituenten

von R. F. Zürcher

(6. VI. 61)

Einleitung. – In den drei umfangreichsten bisher erschienenen Arbeiten über Protonenresonanzspektroskopie von Steroiden¹)²)³) wurde bereits angenommen, dass bis zu einem gewissen Grade eine Additivität der Einflüsse der Substituenten und Doppelbindungen auf die Lage der Signale der beiden angulären Methylgruppen bestehe. Mit der vorliegenden Arbeit und den folgenden⁴) ist es nun gelungen, diese Additivität in weitem Masse sicherzustellen und die Berechnung der chemischen Verschiebung (chemical shift) der C-19- und C-18-Methylgruppen auf eine quantitative Basis zu stellen. Damit wird es viel sinnvoller, als dies bisher der Fall sein konnte, die Lage der Signale dieser Gruppen zur Strukturaufklärung unbekannter Steroide oder ähnlicher cyclischer Verbindungen herbeizuziehen. Dies ist vor allem auch darum erwünscht, weil selbst Substanzmengen in der Grösse von 1 bis 2 mg immer noch deutliche Methylgruppensignale zeigen und so, wenn auch in beschränktem Masse, Hinweise auf die Struktur geben können.

Die Gültigkeit der Additivität der Substituenteneinflüsse deutet darauf hin, dass es sich um einen Feldeinfluss handelt, der seine Ursache in der Anisotropie der Suszeptibilität der betreffenden Substituenten und Doppelbindungen haben dürfte. Auf Grund der bekannten Geometrie des Perhydrophenanthrengerüstes (Ringe A, B und evtl. C) kann der Suszeptibilitätstensor für verschiedene Substituenten (Carbonylgruppen usw.) berechnet werden⁴). Damit wird es möglich, bei bekannter Geometrie einer Molekel die Verschiebung eines Protonensignals nach höherem oder tieferem Feld bei Einführung eines dieser Substituenten in irgendein Gerüst anzugeben, oder umgekehrt aus der Grösse der zusätzlichen chemischen Verschiebung Schlüsse über die stereochemischen Verhältnisse zu ziehen.

Experimentelles. – Die Spektren wurden mit einem modifizierten VARIAN-Kernresonauzspektrographen V-4302 bei 60 Megahertz und 20° aufgenommen. Die Magnetkühlwassertemperatur wurde auf \pm 0,01° und die Lufttemperatur auf \pm 0,1° konstant gehalten. Die Auflösung

¹⁾ J. N. SHOOLERY & MAX T. ROGERS, J. Amer. chem. Soc. 80, 5121 (1958).

²) J. S. G. Cox, E. O. BISHOP & R. E. RICHARDS, J. chem. Soc. 1960, 5118.

³) G. SLOMP, JR., & B. R. MCGARVEY, J. Amer. chem. Soc. 81, 2200 (1959).

⁴⁾ R. F. ZÜRCHER, Helv. (in Vorbereitung).

betrug $5 \cdot 10^{-9}$. Sämtliche Lösungen in deuteriertem Chloroform⁵) sind 0,1 M. Das Probenvolumen betrug zwischen 0,2 und 0,4 ml. Die Resultate sollten mit solchen vergleichbar sein, die in gleicher Konzentration, jedoch in gewöhnlichem Chloroform aufgenommen werden. Dagegen ist bei Verwendung anderer Lösungsmittel mit Abweichungen zu rechnen⁶).

Als interne Referenzsubstanz und Nullpunkt der Frequenzskala diente eine 0,25-proz. (v/v)Lösung von Tetramethylsilan. Die chemischen Verschiebungen in Hz (c/sec) und ppm werden *positiv* gezählt in Richtung *abnehmender* Feldstärke. Der Anschluss an die τ -Skala von TIERS⁷) wird nach folgender Gleichung gefunden:

$\tau = 10,000 - (unsere ppm-Werte).$

Die Signalfrequenzen wurden nach der Seitenbandmethode gemessen⁸), indem bei ca. 500 Hz ein Seitenband erzeugt und dazwischen linear interpoliert wurde. Die Seitenbänder wurden mit Hilfe eines PHILIPS PW 4032 und PW 4062 Frequenzmessers auf 0,1 Hz genau bestimmt. Die Spektren wurden mit einem eigens dafür konstruierten Gerät ausgemessen. Es wurden die Mittelwerte von 4 bis 5 Spektren genommen, die im allgemeinen auf \pm 0,6 Hz (\pm 0,01 ppm) (95% Vertrauensbereich) genau sein sollten. Die Sweepgeschwindigkeiten betrugen 3,3 Hz/sec und 1,65 Hz/sec. Die Spektren wurden mit einem VARIAN-G 10-Schreiber mit einer Vollausschlagdauer von 1 s aufgenommen (s. Fig.). Vorwärts und rückwärts aufgenommene Spektren sowie eine Bestimmung gewisser Signale auf dem Kathodenstrahloszillographen nach der «wiggle beat»-Methode⁹) zeigte, dass diese Verfahren identische Werte liefern.

Die Gründe für die Schwankungen der bisherigen Werte¹)²) der Substituenteneinflüsse liegen u. E. darin, dass Lösungen von ungenügender Verdünnung und wechselnder Konzentration verwendet wurden. Die Verwendung von Benzolkapillaren zur Erzeugung eines Referenzsignals scheint uns eine weitere Unsicherheit einzuführen, indem dann die Messungen von der Suszepti-

- ⁷) G. V. D. TIERS, J. physic. Chemistry 62, 1151 (1958).
- 8) J. T. ARNOLD & M. G. PACKARD, J. chem. Physics 19, 1608 (1951).
- 9) A. A. BOTHNER-BY & R. E. GLICK, J. chem. Physics 25, 362 (1956); C. A. REILLY, *ibid.* 25, 604 (1956).

⁵) Das deuterierte Chloroform wurde uns freundlicherweise von Herrn Dr. E. F. JENNY zur Verfügung gestellt.

⁶⁾ Vgl. z. B. G. SLOMP & F. MACKELLAR, J. Amer. chem. Soc. 82, 999 (1960).

bilität der Lösung abhängig werden, was sich allerdings erst bei höheren Konzentrationen ungünstig auswirken dürfte.

Wir entschieden uns aus folgenden Gründen dazu, durchwegs 0,1 M Lösungen in Deuterochloroform zu untersuchen:

1. Die von uns angegebenen Werte sollten in jedem anderen Laboratorium mit der gleichen Genauigkeit reproduzierbar sein.

2. Möglichst viele Substanzen sollten bei der gegebenen Konzentration löslich sein.

3. Es werden nur Substanzmengen zwischen 10 und 20 mg benötigt bei einem Probenvolumen von 0,2 bis 0,4 ml.

4. Um die Bildung intermolekularer Wasserstoffbrücken zwischen zwei Substanzmolekeln zu verhindern, ist eine «unendliche Verdünnung» mit Lösungsmittel wünschbar. Wir haben uns diesem Idealzustand soweit genähert, als der Informationsgehalt (Signal/Rauschen-Verhältnis) darunter nicht litt. Unterschiedliche intermolekulare Wasserstoffbrücken sind u. a. darum unerwünscht, weil sie die Elektronenverteilung der Substituenten verändern und damit auch deren Suszeptibilitätstensor, was sich wiederum in einer Verschiebung des Zusatzfeldes am Orte der Methylprotonen bemerkbar macht.

5. Jede Substanzmolekel als ganzes weist ebenfalls eine anisotrope Suszeptibilität auf, die sich auf die Nachbarmolekeln auswirkt: ein weiterer Grund, mit verdünnten Lösungen zu arbeiten. Dieser Einfluss dürfte vor allem dafür verantwortlich sein, dass sich die Verhältnisse in konzentrierten Lösungen unüberblickbar verändern können. Da wir als Bezugssubstanz internes Tetramethylsilan verwendeten, ist dieser Anisotropieeffekt auf die Lage des Referenzsignals von nicht zu unterschätzender Bedeutung. Messungen von RICHARDS et al.²) (loc. cit., p. 5126) – besonders solche mit Aromaten – sind unter diesem Gesichtspunkt interpretierbar. Eigene Messungen (Tabelle 1 und unveröffentlichte) zeigen ein ähnliches Verhalten und belegen gleichzeitig, dass wenigstens bei nichtaromatischen Verbindungen und Verwendung von Tetramethylsilan Spektren im Konzentrationsbereich 0,05 bis 0,5 M im allgemeinen unbedenklich miteinander verglichen werden können.

Selbstverständlich sind auch bei verdünnten Lösungen nicht alle Probleme gelöst, indem z. B. nach wie vor das Chloroform mit sterisch besser zugänglichen Substituenten (z. B. in Stellung 3) stärkere Wasserstoffbrücken bilden dürfte als mit geschützteren (z. B. in Stellung 7). Wir werden auf die Verschiebung des CHCl₃-Signals mit der Konstitution der gelösten Molckel in einer späteren Arbeit zurückkommen⁴).

Signal	Konzentration in Mol/l									
Signai	0,01	0,05	0,1	0,5	1,0	1,5				
18-H	41,2	40,8	40,5	40,4	40,2	40,1				
19-H	72,2	71,4	71,2	71,1	71,3	71,9				
21-H	127,6	127,3	127,0	126,8	126,6	126,4				
4-H	345,7	345,2	345,0	344,4	343,8	343,2				
C_6H_6 (ext.)	385,1	384,4	384,3	384,7	385,1	385,4				
CHCl ₃ (0,3%)	435,8	436,9	437,4	440,8	444,0	447,8				

Tabelle 1. Konzentrationsabhängigkeit der Protonenresonanzsignale in Hz von 3, 20-Dioxo-∆⁴pregnen in Deuterochloroform

Klassierung der Spektren und Tabelle der zusätzlichen chemischen Verschiebungen. – Die 160 untersuchten Steroide wurden in zwei Hauptgruppen eingeteilt, die sich in der Konfiguration an C-5 unterscheiden:

A) die 5α -H-Steroide I (Ringe A und B trans verknüpft).

B) die 5 β -H-Steroide II und III (Ringe A und B *cis* verknüpft).

Die Gruppe B) wurde in zwei Untergruppen, entsprechend der Konfiguration an C-14, eingeteilt, nämlich:

B) a) die 5 β -H-14 α -H-Steroide II (Ringe C und D trans verknüpft).

B) b) die 5 β -H-14 β -H-Steroide III (Ringe C und D *cis* verknüpft).

Diese Unterteilung in zwei Hauptgruppen erfolgte, weil, wie vorauszusehen war, bereits die C-19-Methylsignale der zwei Grundkörper – 5α - und 5β -Androstan – verschiedene chemische Verschiebungen aufweisen. Der Unterschied dürfte hauptsächlich von der anisotropen Suszeptibilität der C–C-Bindungen herrühren¹⁰), die entsprechend den verschiedenen Konfigurationen unterschiedliche Zusatzfelder am Ort

der 19-Wasserstoffatome erzeugen. Ausgangspunkt für die nachfolgende Ausgleichsrechnung bildeten die chemischen Verschiebungen der 19-Wasserstoffatome des 5α und des 5β -Androstans:

> 5α -Androstan 46,5 Hz (0,775 ppm) 5β -Androstan 55,5 Hz (0,925 ppm).

Auf diesen Werten aufbauend, lassen sich mit Hilfe der Tab. 4, in der die Beiträge der einzelnen Substituenten und Doppelbindungen in Funktion der Stellung aufgeführt sind, die chemischen Verschiebungen der 19-H-Atome für verschieden substituierte Steroide mittels einer einfachen Addition berechnen. Da der Kohlenwasserstoff, der dem Grundgerüst der 5 β -H-14 β -H-Steroide entspricht, nicht zugänglich war, wurde für diese Verbindungsklasse ebenfalls der Wert 55,5 Hz (0,925 ppm) des 5 β -Androstans zum Ausgangspunkt der Ausgleichsrechnung genommen. Der damit eingeführte Fehler kann nicht gross sein, wie die Zahlen der zusätzlichen chemischen Verschiebungen der Substituenten in 17-Stellung zeigen, die von ähnlicher Grösse sind wie diejenigen der entsprechenden 14 α -H-Steroide.

In Tabelle 2 sind die untersuchten Steroide aufgeführt und zwar von Nr. 1 bis Nr.91 die 5α -H-Steroide, worunter auch die Steroide mit einer von C-5 ausgehenden Doppelbindung gezählt werden. Unter den Nrn. 92 bis 147 werden die 5β -H-14 α -H-Steroide klassiert. Die restlichen Verbindungen sind 5β -H-14 β -H-Steroide. In jeder dieser drei Gruppen sind die Verbindungen nach der Zahl der Funktionen geordnet.

Tabelle 3 gibt einen Überblick über die chemischen Verschiebungen der C-19-Methylgruppe in Verbindung mit einer systematischen Formeldarstellung der in Tab. 2 aufgeführten Steroide. In der 1. Kolonne sind die Nummern der Steroide an-

¹⁰) A. A. BOTHNER-BY & C. NAAR-COLIN, Ann. New York Acad. Sci. 70, 833 (1958). – P. T. NARASIMHAN & MAX T. ROGERS, J. chem. Physics 31, 1302 (1949). – R. CAVANAUGH & B. P. DAILEY, *ibid.* 34, 1099 (1961).

5α -H-Steroide

0 oder 1 Funktion

Nr.

- 1 5α-Androstan
- 2 17-Oxo-5a-androstan
- 3 5α -Ätiansäure (R)
- 4 5α-Ätiansäure-methylester (R)
- 5 5 α -17 β -H-Ätiansäure-methylester (R)

2 Funktionen

Nr.

- 6 1-Oxo-5 α -cholestan (R)
- 7 1-Oxo-5a-ätiansäure-methylester (R)
- 8 2-Oxo-5α-cholestan¹¹)
- 9 5α - Δ^2 -cholesten (R)
- 10 3,17-Dioxo-5α-androstan
- 11 3,20-Dioxo-5α-pregnan
- 12 3α -Hydroxy-17-oxo- 5α -androstan
- 13 3β -Hydroxy- 5α -pregnan (R)
- 14 3β -Methoxy- 5α -pregnan (R)
- 15 3α -Acetoxy-17-oxo- 5α -androstan
- 16 3β -Acetoxy-17-oxo- 5α -androstan
- 17 3β -Acetoxy- 5α -pregnan (R)
- 18 3β -Acetoxy-20-oxo- 5α -pregnan (R)
- Semicarbazon des 3β-Acetoxy-20-oxo-5α-pregnans (R)
- 20 4-Oxo-5 α -cholestan¹²)
- 21 ⊿⁵-Cholesten

3 Funktionen

Nr.

- 22 3,17-Dioxo-5 α - Δ^1 -androsten
- 23 3,17-Dioxo-⊿⁴-androsten
- 24 3-Oxo-17 β -hydroxy- Δ ⁴-androsten
- 25 3,20-Dioxo-⊿⁴-pregnen
- 26 3, 20-Dioxo-21-hydroxy-⊿4-pregnen
- 27 3,20-Dioxo-21-acetoxy-⊿4-pregnen
- 28 3,6-Dioxo-5a-cholestan (R)
- 29 3, 6-Dioxo-5a-ätiansäure-methylester (R)
- 30 3β-Hydroxy-20-oxo-⊿⁵-pregnen
- 31 3β , 6β -Dihydroxy- 5α -cholestan (R)
- 32 3β -Acetoxy-17-oxo- Δ^5 -androsten
- 33 3 β -Acetoxy- Δ^{5} -bisnorcholensäuremethylester
- 34 3 β -Acetoxy- Δ^{5} -ätiansäure-methylester
- 35 3β , 17β -Diacetoxy- Δ^{5} -androsten
- 36 3β-Acetoxy-6-oxo-5α-ätiansäuremethylester (R)
- 37 3β , 6β -Diacetoxy- 5α -cholestan (R)
- 38 3 β -Acetoxy-7, 17-dioxo-5 α -androstan
- 39 3β -Acetoxy-7-oxo-5 α -cholestan (R)

- 40 3β , 17β -Diacetoxy-7-oxo- 5α -androstan
- 41 3β -Acetoxy-7 α -hydroxy-5 α -cholestan (R)
- 42 3β -Acetoxy- 7β -hydroxy- 5α -cholestan (R)
- 43 3β -Acetoxy- 5α - Δ ⁷-cholesten (R)
- 44 3 β -Acetoxy-5 α - $\Delta^{7,22}$ -ergostadien
- 45 3β , 17β -Diacetoxy- 5α - Δ ⁷-androsten
- 46 3β , 17β - 5α - $\Delta^{8(9)}$ -androsten
- 47 3β -Acetoxy- 5α - $\Delta^{8(14)}$ -ergosten (R)
- 48 3β -Acetoxy-11, 20-dioxo- 5α -pregnan
- 49 3β , 11 α -Diacetoxy-20-oxo- 5α -pregnan
- 50 3-Äthylendioxy- 20β -hydroxy- Δ^5 -pregnen

4 Funktionen

Nr.

- 51 3,6-Dioxo-12α-acetoxy-5α-ätiansäuremethylester (R)
- 52 3,11,17-Trioxo-⊿4-androsten
- 53 3,20-Dioxo-11 α -hydroxy- Δ^4 -pregnen
- 54 3,17-Dioxo-11 β -hydroxy- Δ^4 -androsten
- 55 3,20-Dioxo-11 α -acetoxy- Δ^4 -pregnen
- 56 3,20-Dioxo-⊿4,11-pregnadien
- 57 3,20-Dioxo-16 α , 17 α -oxido- Δ ⁴-pregnen
- 58 3,20-Dioxo-⊿4,16-pregnadien
- 59 3-Oxo-17 α -methyl-17 β -hydroxy- Δ^4 -androsten
- 60 3,20-Dioxo-17α-hydroxy-Δ4-pregnen
- 61 3β -Hydroxy-11 α , 20-diacetoxy-16 α -methyl- 5α - Δ ¹⁷⁽²⁰⁾-pregnen
- 62 3-Acetoxy-⊿^{3,5}-cholestadien (R)
- 63 3β -Acetoxy-7, 17-dioxo- Δ^5 -androsten
- 64 3β -Acetoxy-7-oxo- Δ^5 -cholesten (R)
- 65 3β -Acetoxy- $\Delta^{5,7}$ -cholestadien
- 66 3β -Acetoxy-16 α -methyl-20-oxo- Δ ⁵-pregnen
- 67 3β , 21-Diacetoxy-16 α , 17 α -oxido-20-oxo- Δ^{5} -pregnen
- 68 3β , 17β -Diacetoxy-7-oxo- 17α -methyl- 5α -androstan
- 69 3β , 17β -Diacetoxy- 5α - $\Delta^{7,9}$ -androstadien
- 70 3β -Acetoxy-9 α , 11 α -oxido-5 α - Δ ^{7,22}ergostadien
- 71 3β , 17β -Diacetoxy-9 α , 11α -oxido-5 α - Δ^7 androsten
- 72 3β , 17β -Diacetoxy-11-oxo- 5α - $\Delta^{8(9)}$ -androsten
- 73 3β-Acetoxy-11, 20-dioxo-5α-Δ¹⁶-pregnen
- 74 3β-Acetoxy-11,20-dioxo-17α-hydroxy-5α-pregnan
- 75 3β , 11 α -Diacetoxy-20-oxo- 5α - Δ ¹⁶-pregnen
- 76 3-Äthylendioxy-11 α -acetoxy-20 β -hydroxy- Δ^{5} -pregnen
- ¹¹) Wir danken Herrn Dr. A. FÜRST (F. HOFFMANN-LA ROCHE) für die Überlassung dieser Verbindung.
- ¹²) Wir sind Herrn Prof. C. W. SHOPPEE (University of Sydney) für die Überlassung dieser Substanzen zu Dank verpflichtet.

- 77 3,20-Bis-äthylendioxy-11α-acetoxy-⊿⁵-pregnen
- 5 und mehr Funktionen
- 78 3,17-Dioxo-⊿^{1,4,6}-androstatrien
- 79 3-Oxo-17 α -methyl-17 β -hydroxy- $\Delta^{1,4}$ -androstadien
- 80 3, 20-Dioxo-11α-hydroxy-⊿^{1,5}-pregnadien
- 81 11,18-Lacton der 3,20-Dioxo-⊿⁴-pregnen-18-säure
- 82 3-Oxo-11 β , 17 α -dihydroxy- Δ ⁴-ätiensäuremethylester
- 83 3,20-Dioxo-16 β -acetoxy-17 α -hydroxy- Δ^4 -pregnen
- 84 3β , 17β -Diacetoxy-7-oxo- 17α -methyl- Δ^5 -androsten
- 0 oder 1 Funktion
- Nr.
- 92 5 β -Androstan (R)
- 93 5 β -Cholansäure-methylester (R)
- 94 5β -Ätiansäure-methylester (R)
- 2 Funktionen
- Nr.
- 95 1-Oxo-5 β -ätiansäure-methylester (R)
- 96 3,17-Dioxo-5 β -androstan
- 97 3-Oxo-5 β -cholestan (R)
- 98 3, 20-Dioxo-5 β -pregnan
- 99 3-Oxo-5 β -ätiansäure-methylester (R)
- 100 3α , 20 α -Diacetoxy-5 β -pregnan
- 101 3β -Acetoxy- 5β -cardanolid (R)
- 102 3β -Acetoxy- 5β -ätiansäure-methylester(R)
- 103 3β , 4β -Oxido- 5β -cholestan (R)
- 104 4-Oxo-5 β -cholestan¹²)
- 105 9α , 11α -Oxido- 5β -cholansäuremethylester (R)
- 106 11-Oxo-5 β -cholansäure-methylester (R)
- 107 11-Oxo-5 β -ätiansäure-methylester (R)
- 108 11 β -Hydroxy-5 β -cholansäuremethylester (R)
- 109 5β - Δ ¹¹-cholensäure (R)
- 110 $5\beta \cdot \Delta^{11}$ -cholensäure-methylester (R)
- 111 11 α , 12 α -Oxido-5 β -cholansäure-methylester (R)
- 112 11β , 12β -Oxido- 5β -cholansäuremethylester (R)
- 113 12-Oxo-5 β -cholansäure (R)
- 114 12-Oxo-5 β -cholansäure-methylester (R)
- 115 12 α -Hydroxy-5 β -cholansäure (R)
- 116 12 α -Hydroxy-5 β -cholansäuremethylester (R)
- 3 Funktionen
- Nr.
- 117 3,11,20-Trioxo-5 β -pregnan
- 118 3-Oxo-12α-hydroxy-17β-H-5β-ätiansäurelacton (R)

- 85 3β, 16β, 21-Triacetoxy-17α-hydroxy-20-oxo-Δ⁵-pregnen
- 86 $3\beta, 17\beta$ -Diacetoxy-7, 11-dioxo-8 $\alpha, 9\alpha$ -oxido- 5α -androstan
- 87 3-Oxo-17 α -methyl-17 β -hydroxy- $\Delta^{1,4,6}$ androstatrien
- 88 18,20-Lacton der 3-Oxo-11α,20βdihydroxy-Δ^{1,5}-pregnadien-18-säure
- 3, 20-Dioxo-16α-methyl-17α-hydroxy-21-acetoxy-Δ^{4,9}-pregnadien
- 90 3,20-Dioxo-16α-methyl-17α-hydroxy-21-acetoxy-Δ^{1,4,9}-pregnatrien
- 91 3,20-Dioxo-16α-methyl-11α,17α-dihydroxy-21-acetoxy-Δ^{1,4}-pregnadien

5β -H-14 α -H-Steroide

- 119 3α -Hydroxy-11 β , 12 β -oxido-5 β ätiansäure-methylester (R)
- 120 3α -Acetoxy- 5β - Δ ⁹-ätiensäuremethylester (R)
- 121 3α-Acetoxy-9α, 11α-oxido-5β-ätiansäuremethylester (R)
- 122 3α -Acetoxy-9 β , 11β -9 β -, 11β -oxido-5 β ätiansäure-methylester (R)
- 123 3α -Acetoxy-11,20-dioxo-5 β -pregnan
- 124 3α , 11α -Diacetoxy-20-oxo- 5β -pregnan
- 125 3α -Acetoxy-12, 20-dioxo-5 β -pregnan
- 126 3β -Acetoxy- 5β - Δ ^{7,22}-cardadienolid (R)
- 127 3β -Acetoxy- 5β - $\varDelta^{8(9)}$ -cardenolid (R)
- 128 3β -Acetoxy- 5β - $\Delta^{8(9),22}$ -cardadienolid (R)
- 129 3β -Acetoxy- 5β - $\Delta^{8(14)}$ -cardenolid (R)
- 130 3β -Acetoxy- 5β - $\Delta^{8(14),22}$ -cardadienolid (R)
- 131 3β -Acetoxy- 5β - $\Delta^{8(14)}$ -ätiensäuremethylester (R)
- 132 3β-Acetoxy-12β-hydroxy-5β-ätiansäuremethylester (R)
- 133 3β -Acetoxy- 5β - Δ^{14} -cardenolid (R)
- 134 3 β -Acetoxy-5 β - $\Delta^{14,22}$ -cardadienolid (R)
- 135 3β -Acetoxy- 5β - Δ ¹⁴-ätiensäuremethylester (R)
- 136 3β -Acetoxy-14 α , 15 α -oxido-5 β -ätiansäuremethylester (R)
- 137 3β -Acetoxy-14 β , 15 β -oxido-5 β -ätiansäuremethylester (R)
- 138 3β-Acetoxy-15-oxo-5β-ätiansäuremethylester (R)
- 139 12-Oxo-5 β - Δ^{9} -cholensäure-methylester(R)
- 140 11,12-Dioxo- 5β -cholansäure-methylester (R)
- 141 11 α -Brom-12-oxo-5 β -cholansäure (R)
- 142 11 β -Brom-12-oxo-5 β -cholansäure (R)

4 Funktionen

Nr.

143 3,7,12-Trioxo-5β-ätiansäure-methylester (R)

- 144 3-Oxo-11 α -acetoxy-20 β -hydroxy-5 β -pregnan-18-säure-lacton
- 145 3α -Hydroxy- 7α -acetoxy-12-oxo- 5β -ätiansäure-methylester (R)

2 Funktionen

Nr.

- 148 14 β -Hydroxy-5 β -ätiansäure (R)
- 149 14 β -Hydroxy-5 β -ätiansäure-methylester (R)
- 150 14β -Hydroxy- 5β -ätiansäure-lacton (R)
- 151 3β -Acetoxy-17 β -H-5 β -ätiansäuremethylester (R)

3 Funktionen

Nr.

- 152 3β , 14β -Dihydroxy- 5β - Δ^{22} -cardenolid (R)
- 153 3β -Acetoxy-14 β -hydroxy-5 β - Δ^{22} cardenolid (R)
- 154 3β-Acetoxy-14β-hydroxy-5β-ätiansäuremethylester (R)
- 155 3β -Acetoxy-14 β -hydroxy-17 β -H-5 β ätiansäure-methylester (R)
- 156 3 β -Acetoxy-14 β -H-15-oxo-5 β -ätiansäuremethylester (R)

- 146 3α , 11α -Diacetoxy- 20β -hydroxy- 5β -pregnan-18-säure-lacton
- 147 11-Hydroxy-12-oxo-5β-Δ⁹-cholensäure (R)

5β -H-1 4β -H-Steroide

- 157 3β -Acetoxy-14 β -H-15-oxo-17 β -H-5 β ätiansäure-methylester (R)
- 158 3β -Acetoxy-14 β -H-15 α -hydroxy- 5β -ätiansäure-methylester (R)

4 Funktionen

Nr.

- 159 3β -Acetoxy-14 β -hydroxy-15-oxo- 5β -ätiansäure-methylester (R)
- 160 3β -Acetoxy-14 β , 15 α -dihydroxy-5 β -ätiansäure-methylester (R)

Die mit einem (R) versehenen Substanzen wurden uns von Herrn Prof. T. REICHSTEIN zur Verfügung gestellt. Die nicht bezeichneten Steroide erhielten wir – mit drei Ausnahmen¹¹)¹²) – aus den Forschungslaboratorien der pharmazeutischen Abteilung der CIBA AG.

gegeben. Im Hauptfeld (2. Kolonne) folgen die Substituenten in Funktion der Stellung, die am Kopf angeführt ist. Kursive Schrift bedeutet, dass sich der Substituent in β -Orientierung befindet; für die α -Orientierung wird normale Schrift verwendet. In der 3. Kolonne der Tab. 3 sind die chemischen Verschiebungen der 19-Wasserstoffatome für die betreffenden Verbindungen in ppm, in der 4. Kolonne in Hz (c/s) angegeben. In der 5. Kolonne finden sich die Abweichungen der experimentell gefundenen Werte gegenüber den gemäss Tab. 4 berechneten Werten. Eine positive Abweichung bedeutet dabei, dass das Signal bei höherem Hertz- und ppm-Wert (d. h. bei tieferer Feldstärke) auftritt, als dies entsprechend dem berechneten Wert zu erwarten gewesen wäre.

Es ist hier vielleicht die Bemerkung angebracht, dass die «besten» Werte für die zusätzlichen chemischen Verschiebungen der einzelnen Substituenten, wie sie in Tab. 4 aufgeführt sind, nicht auf Grund einer strengen Korrelationsrechnung im Sinne der GAUSS'schen Methode der kleinsten Fehlerquadrate gefunden wurden. Vielmehr wurde im Interesse einer grösseren Flexibilität, die auf sterische Einflüsse besser Rücksicht nehmen konnte, die Ausgleichsrechnung nach der «trial and error» Methode durchgeführt. Eine genaue mathematische Behandlung hätte zur Einführung zu vieler Nebenbedingungen geführt, und damit wäre eine Ausgleichsrechnung überhaupt illusorisch geworden.

In Tabelle 4 sind die Beiträge der einzelnen Substituenten und Doppelbindungen in Funktion der Stellung aufgeführt. Die erste Kolonne bezeichnet die Stellung. Mit einem Stern (*) versehene Zahlen geben an, dass diese zusätzlichen chemischen Verschiebungen auf Grund einer einzigen Verbindung bestimmt wurden und daher etwas

1386

Volumen xLiv, Fasciculus v (1961) – No. 171

(Abkürzungen siehe am Schluss der Tabelle)

1	1	- 14 ₁	a . 11	· · · · · · · · · · · · · · · · · · ·	10.77	40.77	
Nr.			Stellu	ng	19-H	19-H	Diff.
	1 2 3 4 5	67891011	12 13 14	- 15 16 17	ppm	Hz	Hz
	1		5a U Sta	moido	i		
1	E. TT And		54-11-54	eroide	0.775	16 5	0.0
	152-H-AII0	rostan		77	0,775	40,5	0,0
				K	0,805	48,3	0,5
3				СООН	0,780	46,8	0,3
4				COOCH ₃	0,773	46,4	-0,1
5				COOCH ₃	0,772	46,3	-0,2
6	K			$C_{8}H_{17}$	1,135	68,1	-0,4
7	K			COOCH ₃	1,157	69,4	-0,1
8	К			$C_8 H_{17}$	0,753	45,2	0,2
9				$C_{8}H_{17}$	0,768	46,1	0,1
10	К			K	1,037	62,2	0,2
11	к			COCH.	1.007	60,4	-0.1
12	0			к	0.807	48.4	-0.1
13	0			$C_{\circ}H_{r}$	0.803	48.2	0.2
14	OCH	. 1		$C_2 H_2$	0 798	47.9	-01
115		5		~2**5 K	0.825	49.5	
16				IX IX	0.845	50.7	0,0
17					0,017	40.0	- 0,5
10				$C_2 II_5$	0,017	40.4	0,5
10	A			C(CH) NNHCONH	0,825	49,4	- 0,1
19				$C(CH_3) = NNHCONH_2$	0,827	49,6	0,1
20	K			C_8H_{17}	0,735	44,1	0,1
21	2	1	i	C_8H_{17}	0,997	59,8	2,8
00			Í	77	1 0 1 2	1 car	0.1
22				K	1,043	02,0	0,1
23	K /			K	1,215	72,9	0,4
24	KД			0	1,198	71,9	0,4
25	K⊿			COCH ₃	1,192	71,5	0,5
26	K⊿			$COCH_2OH$	1,185	71,1	0,1
27	K⊿			$COCH_2OAc$	1,198	71,9	0,9
28	K	K		C_8H_{17}	0,940	56,4	- 0,6
29	K	К		COOCH ₃	0,967	58,0	0,0
30		4		COCH ₃	1,008	60,5	0,0
31	0	0		C_8H_{17}	1,023	61,4	-0,1
32		4		K	1,047	62,8	0,3
33		4		$CH(CH_3)COOCH_3$	1,032	61,9	0,9
34		4		COOCH	1,010	60,6	- 0,4
35		4		Å	1,032	61,9	0,4
36		K		COOCH.	0.783	47.0	0.0
37	A	A		$C_{0}H_{10}$	1.012	60.7	0.2
38		ĸ		-817 K	1.140	68.4	0.4
30		ĸ		C _o H _e	1.103	66.2	07
40	4	ĸ		~ 8 17 A	1 113	66.8	$ _{-0.2}$
41		<u> </u>		C H	0.853	51 2	0,2
171		o o		$C_{8}^{\prime \prime 1}$	0.827	40.6	0,2
42		4		$C_{8}^{II}_{I7}$	0,027	40.4	0,1
43		4		$C_{8}^{I_{17}}$	0,043	12,4	0,4
44		4		C ₉ <i>H</i> ₁₇	0,013	40,9	- 0,1
45		<u>/</u>] 18(14)		A1 A	0,832	49,9	- 0,0
46				A	0,715	42,9	- 0,1
1 47	A	⊿™(14)		C_9H_{19}	10,723	45,4	1,9

HELVETICA CHIMICA ACTA

Tabelle	3	(Fortsetzung)

			*****				10.11	10.11	D:0
Nr.				Stel	lung	4.7	19-н	19-H	
	1234	5678	9 10 1	11 12 13	14 15 16	17	ppm	Ηz	Hz
40	4			L.		COCH	1 0 2 9	61 7	1.9
40						COCH	0.022	56.0	1,0
49	A			A		CUCH ₃	1 0 0 7	50,0	0,0
50	Ae	Д				CHOHCH ₃	1,027	01,0	0,1
51	K	K		A		COOCH ₃	0,962	57,7	-0,3
52	K⊿			К		K	1,433	86,0	-0,5
53	K⊿			0		COCH ₃	1,337	80,2	0,7
54	K⊿			0		K	1,472	88,3	0,3
55	K⊿			A		COCH ₃	1,265	75,9	-1,6
56	K⊿			Δ		COCH ₃	1,142	68,5	-0,5
57	K⊿				Е	COCH ₃	1,190	71,4	-0,6
58	K⊿				Δ	COCH	1.220	73,2	0,2
59	K/					O & 17α-CH.	1.215	72,9	0.9
60	КЛ					0 & 17B-COCH.	1.193	71.6	0.1
61	0			A I	м	$[= C(CH_{a})OAc]$	0.897	53.8	-0.7
62	A /	4		~~		C.H.	0.995	59.7	0.2
63	4	A K				K	1 247	74.8	$ _{-0.2}$
64	1	A K					1 207	724	_01
6						C H	0.059	575	-0,1
					м	COCH	1 002	60.2	0,0
00					IVI.	COCH 0 1	1,005	60,2	-0,0
67					E	COCH ₂ OAC	1,045	02,0	0,0
68	A	n n				$A \propto 1/\alpha - CH_3$	1,120	07,2	-0,3
69	A		-			A	0,935	56,1	0,1
70	A	Δ	E			$C_{9}H_{17}$	1,005	60,3	-0,7
71	A		E	l		A	1,028	61,7	-0,8
72	A	4	Je(a)	к		A	1,127	67,6	0,1
73	A			К	Δ	COCH ₃	1,035	62,1	-3,4
74				к		O & 17β -COCH ₃	1,028	61,7	-2,3
75				A		COCH ₃	0,958	57,5	- 0,5
76	Ae	Δ		A		CHOHCH ₃	1,143	68,6	0,6
77	Ae	14		A		$C(OCH_2)_2CH_3$	1,092	65,5	- 0,5
78	∆ K∆	Δ				K	1,223	73,4	- 0,1
79	⊿ K⊿					Ο & 17α-CH ₃	1,243	74,6	- 0,9
80	⊿к	4		0		COCH ₃	1,353	81,2	0,2
81	К⊿			0- & 18-C	0-	COCH ₃	1,293	77,6	0,1
82	K/			0		O & 17β-COOCH,	1,455	87,3	0,3
83	K/				A	О & 17β-СОСН.	1,200	72.0	-0.5
84	A	A K				A & 17a-CH.	1,247	74.8	0.3
85	A	4			A	0 & 17B-COCH_OAC	1.045	62.7	0.2
86	A	Г кı	E8(9)	к		A	1.250	75.0	0,0
87	A KA	1	_			$O \gg 17\alpha$ -CH	1 212	727	-03
88	л <u>г</u>			0		$CH(CH_{1})O_{1}CO(18)$	1 442	86.5	0,5
80			1	ĭ	м	0 & 178-COCH 0.4	1 345	80.7	0,5
	1 11	1	1	i	M	$0 & 17B_{COCH} O 4$	1 412	84.7	0,2
01			41	0	M M	O & 17R COCH O 4	1 402	84.1	0,1
91		1		^V	1 141	0 u 11p-0001120AC	1,404	04,1	0,0
			r	<u>лы 14~</u>	U 04	da			
02	E0 TT A-	draat	5,	μ-π-14α· ∣	-11-5ter01	ue	0.000	== .	0.1
92	эр-п-Ап	urostan				C H COOCH	0,923	55,4	-0,1
93		1				COOCH	0,907	54,4	
94	I					$COUCH_3$	0,923	55,4	-0,1

Tabelle	3	(Fortsetzung)
---------	---	---------------

Nr			Stellu	ng		19-H	19-H	Diff.
	1234	5678910	11 12 13	14 15 1	5 17	ppm	Hz	Hz
95	К			-	COOCH ₃	1,135	68,1	0,1
96	К			1	К	1,048	62,9	- 0,1
97	К			}	$C_{8}H_{17}$	1,015	60,9	0,4
98	К				COCH ₃	1,022	61,3	- 0,2
99	K				COOCH ₃	1,018	61,1	- 0,4
100	A				$CH(CH_3)OAc$	0,928	55,7	0,2
101	A				$C_4H_5O_2$	0,983	59,0	0,5
102					COOCH ₃	0,963	57,8	-0,2
103	E				C_8H_{17}	0,867	52,0	0,0
104	К	-		i i	C ₈ H ₁₇	1,102	66,1	0,1
105		Е			C ₄ H ₈ COOCH ₃	1,117	67,0	0,5
106			K		C ₄ H ₈ COOCH ₃	1,152	69,1	0,6
107			ĸ		COOCH ₃	1,158	69,5	0,0
1108			0		$C_4H_8COOCH_3$	1,170	70,2	0,2
109					C_4H_8COOH	0,867	52,0	-0,5
110			Д		$C_4H_8COUCH_3$	0,877	52,6	0,1
112				1	$C_4 H_8 COOCH_3$	1 007	50,5	0,0
1112			K		C H COOH	1,097	60.2	-0,2
114			ĸ		$C_{4}H_{8}COOCH$	0.003	50.6	0,2
115			0		$C_{4}H_{8}COCH_{3}$	0,900	54.6	0,1
116			Ŏ		C.H.COOCH	0,912	54 7	0,1
110			Ű		041180000113	0,512	51,7	0,2
117	К		к		COCH3	1,250	75,0	- 0,5
118	K		0-		CO-	1,027	61,6	0,1
119	0		E		COOCH ₃	1,102	66,1	0,1
120	A	Δ			COOCH ₃	1,060	63,6	- 0,9
121	Α	E			COOCH ₃	1,130	67,8	0,3
122	A	E			COOCH ₃	1,050	63,0	0,0
123	A		ĸ		COCH ₃	1,167	70,0	0,5
124	A		A TZ		COCH ₃	1,025	61,5	- 0,5
125	A	4	K		CHO	1,018	61,1 =00	0,1
120	A	∠] ∕18(9)			$C_4 D_3 O_2$	1 052	58,0	-0,4
122		∠1/8(9)			CHO	1 075	64 5	-0,0
120	A	<u>/18(14)</u>			CHO	0.850	51.0	_0.5
130	A	<u>/</u> 8(14)			$C_4 H_5 O_2$	0,867	52.0	0,5
131	A	18(14)			$COOCH_{2}$	0.842	50.5	-05
132	A	<u></u>	0		COOCH.	0.975	58.5	0,0
133	A		Ĭ	1	$C_{i}H_{i}O_{2}$	0.983	59.0	0.0
134	A			1	$C_4 H_0 O_0$	0.988	59.2	-0.2
135	Ā			4	COOCH.	0,965	57.9	- 0.6
136	Ā			E	COOCH,	0,963	59.0	0.0
137	A			E	COOCH, 13)	1,070	64,2	0,2
138	A			к	COOCH ₃	0,983	59,0	0,0
139		Δ	K		C ₄ H ₈ COOCH ₃	1,172	70,3	-0,2
140			кк		C ₄ H ₈ COOCH ₃	1,335	80,1	6,1

¹³) Obschon es sich bei der Verbindung Nr. 137 um ein 14β , 15β -Oxido-Steroid handelt, wurde sie unter den 14α -H-Steroiden aufgeführt, weil der D-Ring durch das Epoxyd in eine ähnliche Lage gebracht wird wie durch eine Doppelbindung in Stellung 14.

HELVETICA CHIMICA ACTA

Nr.	1234	5678	9 10	Stellur 11 12 13	ng 14 1	15 16	5 17	19-Н ррт	19-H Hz	Diff. Hz
141				Br K			С.Н.СООН	1.160	70.8	-0.2
142				Br K			C_4H_8COOH	1,373	82,4	-0,1
143	к	к		к			COOCH ₃	1,407	84,4	0,4
144	К			A			CH(CH ₃)O-CO(18)	1,213	72,8	-0,2
145	0	А		К			COÒCH ₃	1,100	66,0	0,0
146	А			A			CH(CH ₃)O-CO(18)	1,130	67,8	0,8
147		[Δ	ок			C4H8COOH	1,222	73,3	- 0,2
			5	<i>в</i> -н-14 <i>в</i> -	н-\$	Stero	oide			
148				/ <i>r</i>	0		COOH	0,932	55,9	-0,1
149					0		COOCH,	0,912	54,7	- 0,3
150		ļ		,	0-		CO- "	0,972	58,3	-0,2
151	A						COOCH3	0,930	55,8	-0,2
152	0				0		$C_4H_3O_3$	0,954	57,1	- 0,9
153	A				0		$C_{4}H_{3}O_{2}$	0,968	58,1	0,1
154	A				0		COOCH ₃	0,970	58,2	0,7
155	A				0		COOCH3	0,962	57,7	0,2
156	A					\mathbf{K}	COOCH ₃	0,903	54,2	- 0,3
157	A	1				к	COOCH ₃	0,895	53,7	- 0,3
158	A	ļ				0	COOCH ₃	0,937	56,2	0,7
159	A				0	к	COOCH ₃	0,927	55,6	0,1
160	A			1	0	0	COOCH ₃	0,930	55,8	- 0,7
L	<u> </u>	<u> </u>		 Ve	ı rwer	ndete .	Abkürzungen		<u> </u>	<u> </u>

Tabelle 3 (Fortsetzung)

Die kursiven Buchstaben bedeuten, dass sich der Substituent in β -Orientierung befindet.

weniger zuverlässig sind als die andern, mehrfach gesicherten Werte, die auf 0,5 Hz genau angegeben werden. Negative Zahlen bedeuten, dass diese Beträge von den Grundwerten für das 5α - und das 5β -Androstan abgezogen werden müssen. Die Werte für einzelne Halogene wurden den bereits zitierten Quellen¹)²) entnommen und sind gleichfalls in der Tab. 4 aufgeführt.

); 		,292)* .9 (,317)*; .9 (,000)*
e Funktionen))) (467 (467 (467 (467 (467 (467 (467)) (467 (467)) (467 (467)) (467 (467)) (467 (467)) (467) (477)		∆ ⁸⁽⁹⁾ -11K: 17,5 (∆ ⁹ -11-OH-12K: 1 2,5 (,375)* re-lacton: 6,5 (,10 rbonsäure-lacton
Übrig	$\begin{array}{c} A^{1}\text{-3}\text{K}: 14,5 \ (,242); \\ A^{1}\text{-4}^{8}\text{-3}\text{K}: 25,5 \ (,422); \\ A^{4}\text{-3}\text{K}: 24,5 \ (,408); \\ OCH_3: 2 \ (,033)^{*}; \ \text{Ae} \\ CI: 3 \ (,050)^{*1} \end{array}$		$\Delta^{7,9}$: 6 (,100)* $\Delta^{8(14)}$: -7 (-,117); $\Delta^{9,12K}$: 16 (,267)*;; F: 7 (,117)* ¹) F: 7 (,117)* ¹) Br: 11 (,183)*; Br : 2 11 β -Hydroxy-18-säu Br: -1 (-,017) ²) 12 α -Hydroxy-17 α -ca
E		- 2,5* (-,042)*	7,5* (,125)* 11,5 (,192)
ਸ਼ 			6* (-,100)* 12 (,200) (,200)
P	0,5* (,008)* 11,5 (,192)		0,5 (,008) (,008) (,092) (,150) (,150) (-,033)
V	3 (,050)	2,5 (,042)	12 * (,200) *
A	1,5* (.025)*	0(000)	6* (,100)* 6,5 (,108) 0* (,000)*
0	2,5 (,042)	2,5 (,042)	13,5* (,225)* 1* (,017)* (,017)* (,2258) 0,5* (,008)*
0	0,5*	-1* (-,017)*	2,5* (,042)* 8,5 (,142) (,142) (,000)
Ж	23 (,383) -0,5* (-,008)* 14 (,233) -1,5* (-,025)*	12,5* (,208)* 6 (,100) 11,5* (,192)*	= 2.5 - 2.5 - 2.5 - 2.5 - 2.5 - 2.6 - 0.42 - 0.4
Stel- lung	-1 0 m 4 m	H 0 6 4 10	5 8 9 9 9 8 7 6 11 11 10 9 8 7 6
	5α-St eroide	sbio1st∂-8¦∂	

(Granning) - company	A D E C </th <th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th> <th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th> <th>14\$-Hydroxy-17\$-carbonsäure-lacton: 3 (,050)*</th> <th></th> <th></th> <th>$\begin{array}{c} \text{COOCH}_3:=2\left(-,033\right); \text{ \$COOCH}_3:=1,5\left(-,025\right); \\ \$C\$ H\$ \$O\$: \$-15\$ (\$-,025\$); \\ \text{ \$C\$ H\$ \$O\$: \$-15\$ (\$-$</th> <th>$COOH & 14\beta OH mit H-Brücke: 0,5 (,008)* COOCH_3 & 14\beta OH mit H-Brücke: -0,5 (,008)$</th> <th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th> <th><i>COOCH</i>₃: 0 (,000) <i>ürzungen befindet sich am</i> Fuss der Tab. 3. <i>ch der</i> Substituent in β-Orientierung befindet. <i>nden</i> Werte nur an einer Verbindung bestimmt wurden. <i>ben</i>; darunter befinden sich die ppm-Werte in Klammern.</th>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14\$-Hydroxy-17\$-carbonsäure-lacton: 3 (,050)*			$\begin{array}{c} \text{COOCH}_3:=2\left(-,033\right); \text{ $COOCH}_3:=1,5\left(-,025\right); \\ C H$ O : -15 ($-,025$); \\ \text{ C H$ O : -15 ($-$	$COOH & 14\beta OH mit H-Brücke: 0,5 (,008)* COOCH_3 & 14\beta OH mit H-Brücke: -0,5 (,008)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>COOCH</i> ₃ : 0 (,000) <i>ürzungen befindet sich am</i> Fuss der Tab. 3. <i>ch der</i> Substituent in β-Orientierung befindet. <i>nden</i> Werte nur an einer Verbindung bestimmt wurden. <i>ben</i> ; darunter befinden sich die ppm-Werte in Klammern.
	E	* ¹³) 00)*	⊿ ¹⁶ +) W T	14β.			сос С Н С	C0C	0,5 (,008) 0,5 (,008) -2 (,033) 5 (,033) -1 (-,01	Lab. 3. befindet. f bestimmt -Werte in I
1		,1 (,1						<u> </u>	(18):	ss der 1 ierung indung ie ppm
2	ы	1* (,017)*	1 (,017)						D_{3} : D_{2} : $H_{3})O-CO$ $H_{3})O-CO$	am Fus β -Orient ner Verb x sich di
	Ρ	0,5 (,008)							C_4H_5C C_4H_3C C(OC) CH(C CH(C)	findet sich tituent in nur an ei er befinde
2	V		1 (,017) 0,5 (,008)						$\begin{array}{c} 1 & (-,017) \\ 1 & (-,017) \\ 1 & (-,017) \\ 1 & (-,017) \\ (,000) \\ (,000)^{\ast} \end{array}$	rzungen be h der Subs den Werte en; darunt
	A									t Abkü lass sicl treffen ngegeb
									00H: 00CH (CH ₃ : 1) ₃ OAc	ndeten uten, d die be s'/sec) a
	0		0,5 (,008)	1,5 (,025)					С ₉ Н ₁₇ : С ₄ Н ₈ С С ₄ Н ₈ С СНОН СНОН	er verwe en bedei igt, dass in Hz (c
	0		0,5 (,008)		$^{-1*}_{(-,017)*}$				(,008) (,000)* (-,017) (-,017) (-,017)*	rzeichnis de e Buchstab arn (*) besa (träge sind
	Ж	1* / 017)*	1,5 (,025)		-2 (-,033)				H ₃ : 0,5 -1 -1 -1 -1	Ein Ve Kursive Ein Ste Die Bei
	Stel- lung	14 15	16 17	14	15	16	17		CH_3 : COOCI C_3H_5 : C_8H_{17} : C_8H_{17} : C_8H_{19} :	
ĺ		abiot	at2- 24		əbide	Sterc	- <i>₿</i> +ĭ		,	

Tabelle 4 (Fortsetzung)

1392

HELVETICA CHIMICA ACTA

Werden die von SHOOLERY & ROGERS in ihrer Tab. 1¹) angegebenen chemischen Verschiebungen mit Hilfe unserer Tab. 4 berechnet, so zeigt es sich, dass die Summe der Abweichungsquadrate am kleinsten wird, wenn für den Abstand Benzol_{extern}-Tetramethylsilan_{intern} bei 60 MHz der Wert 384 Hz (6,400 ppm) angenommen wird. Diese Abweichung vom üblicherweise angenommenen Wert von 385 Hz geht in der gleichen Richtung, wie sie von RICHARDS *et al.*²) (*loc. cit.*, p. 5126) für ihre Rechnungen erwähnt wurde.

Diskussion der Resultate. – Wir beschränken uns in dieser Diskussion auf eine Besprechung der Gründe für die stärkeren Abweichungen ($\geq 1,0$ Hz) gewisser Spektren vom erwarteten Resultat und auf andere auffällige Befunde.

Bei der Hälfte der Unstimmigkeiten, nämlich den Substanzen Nr. 48, 55, 73, 74 und 140 handelt es sich um 11-Ketone oder bei Nr. 55 um ein 11 α -O-Acetat. Eine Begründung für dieses Verhalten liegt u. a. darin, dass bei den 11-Ketonen unter allen Ketosteroiden (mit Ausnahme des unten zu besprechenden 1-Oxo-5 β -H-Steroids) die Ketogruppe den geringsten mittleren Abstand von den 19-Wasserstoffatomen aufweist. Demnächst zu veröffentlichende Berechnungen⁴) zeigen denn auch, dass das C-19-Methylsignal sehr kritisch von der räumlichen Lage der 11-Ketogruppe abhängig ist. Es scheint, dass der Ring C durch seine Verknüpfung mit dem Cyclopentanring D nicht mehr in einer reinen Sesselform vorliegt¹⁴) und dass diese Sesselform zudem durch Substituenten an den Ringen C und D modifizierbar ist.

Bei der Berechnung der Lage des C-19-Methylsignals dürfte daher dann eine gewisse Vorsicht am Platze sein, wenn in Stellung 11 substituierte Verbindungen untersucht werden. Auf Grund der bisherigen Erfahrungen kann gesagt werden, dass sich der Wert 14 Hz (0,233 ppm) für die zusätzliche chemische Verschiebung hervorgerufen durch eine 11-Ketogruppe bis auf 10 Hz (0,167 ppm) verringern kann. Diese Konformationsänderungen ziehen natürlich auch die räumlichen Koordinaten des C-12-Atoms in Mitleidenschaft. Hauptsächlich wegen der grösseren Distanz zu den 19-Wasserstoffatomen bewirken aber die Änderungen der Geometrie des C-Ringes keinen merklichen Unterschied des Einflusses der 12-Ketone. Beim 11,12-Dioxo-Steroid Nr. 140 kann *a priori* nicht erwartet werden, dass einfache Additivität gilt, indem hier verschiedene Wechselwirkungen auftreten können.

Zum 1-Oxo-5 β -ätiansäure-methylester Nr. 95 ist zu bemerken, dass aus theoretischen Gründen⁴) eine negative zusätzliche chemische Verschiebung statt 12,5 Hz (0,208 ppm) zu erwarten wäre. Anderseits haben auch DJERASSI *et al.*¹⁵) einen abnormen COTTON-Effekt erhalten, was auf eine besondere Stereochemie dieser Verbindung deuten könnte. Zur Abklärung dieser Frage müssten weitere 1-Oxo-5 β -H-Steroide untersucht werden.

¹⁴) W. KLYNE, erscheint demnächst in Tetrahedron. Wir sind Herrn Prof. KLYNE für eine Einsichtnahme in seine noch unveröffentlichte Publikation dankbar. Darin macht er im besonderen auch auf die Unstimmigkeiten der Rotationsdispersionsmessungen von 11-Keto-12-hydroxy- und 12-Keto-11-hydroxy-Steroiden aufmerksam. – K. S. PITZER & W. E. DONATH, J. Amer. chem. Soc. 81, 3213 (1959). – F. V. BRUTCHER, T. ROBERTS, S. J. BARR & N. PEARSON, *ibid.* 81, 4915 (1959). – C. W. SHOPPEE, R. H. JENKINS & G. H. R. SUMMERS, J. chem. Soc. 1958, 3048. – J. FISHMAN & C. DJERASSI, Experientia 16, 138 (1960). – N. L. ALLINGER, R. B. HERMANN & C. DJERASSI, J. org. Chemistry 25, 922 (1960).

¹⁵) C. Djerassi, O. Halpern, V. Halpern, O. Schindler & Ch. Tamm, Helv. 41, 250 (1958).

Die zwei letzten Unstimmigkeiten beziehen sich auf zwei Steroide mit Doppelbindungen, Nr. 21 und 47. Die Gründe dafür können wir uns nicht erklären. Abgesehen von diesen beiden Abweichungen ist es aber eigentlich doch recht erstaunlich, in wie weitem Masse die Additivität bei Steroiden mit Doppelbindungen gewahrt bleiben, wenn man bedenkt, wie stark das Steroidgrundgerüst durch die Einführung von Doppelbindungen unter Umständen deformiert wird.

Den Vorschlag MUSHERS¹⁶), wonach im Gegensatz zum Vorgehen von SHOOLERY & ROGERS¹) beim 3β -Hydroxy-17-oxo-5 α -androstan das Signal bei höherer Feldstärke der 19-Methylgruppe zuzuschreiben sei, können wir voll unterstützen, indem dann auch die Additivität für das C-18-Methylsignal gewahrt ist⁴). Bei der Bestimmung der zusätzlichen chemischen Verschiebung, hervorgerufen durch eine 3α -Hydroxylgruppe bei 5α -H-Steroiden, wozu uns leider nur eine einzige Verbindung zur Verfügung stand (Nr. 12), haben wir uns der Überlegungen MUSHERS bedient und ebenfalls das Signal bei höherer Feldstärke der 19-Methylgruppe zugeordnet. Es ist übrigens keine seltene Erscheinung, dass das C-19-Methylsignal bei höherer Feldstärke auftritt als dasjenige der 18-Wasserstoffatome. So ist bei den Steroiden Nr. 2, 5, 12, 15, 67, 118, 148, 149, 150, 151, 155, 156, 157 und 159 die übliche Reihenfolge gerade umgekehrt, wobei allerdings mehr als die Hälfte davon 5β -H-14 β -H-Steroide sind. In 7 untersuchten Verbindungen fallen die Signale der beiden angulären Methylgruppen mehr oder weniger genau zusammen: Nr. 16, 113, 114, 129, 131, 154 und 160.

Zum Schluss unserer Diskussion möchten wir noch auf einige Regelmässigkeiten der zusätzlichen chemischen Verschiebungen hinweisen. Wenn diese Verschiebungen ausschliesslich durch die anisotrope Suszeptibilität der Substituenten bedingt wären und keine unsymmetrischen Nebenwirkungen auftreten würden, dann müssten bei 5α -H-Steroiden die Effekte von zueinander spiegelbildlichen Funktionen in den Ringen A und B gleich sein (Spiegelebene in der Ebene der Kohlenstoffatome 5-10-19)¹⁷), d. h.

Substituent (Ring A)	$\Delta\delta \ \mathrm{Hz}$	⊿δ Hz	Substituent (Ring B)
3-Oxo	14,0	17,0	7-Oxo
4-Oxo	-1,5*	- 2,5	6-Oxo
⊿4-3-0xo	24,5	24,0	⊿⁵-7-Oxo
Δ^2	0,5*	0,5	⊿7
3α -Hydroxy	0,5*	2,5*	7α-Hydroxy
3β -Hydroxy	2,5	1,0*	7β -Hydroxy
3α -Acetoxy	1,5*	6,0*	7α -Acetoxy

Tabelle 5. Vergleich der Einflüsse korrespondierender Funktionen in 5a-H-Steroiden

 $\Delta \delta$ = zusätzliche chemische Verschiebung der 19-Wasserstoffatome *) Diese Werte wurden nur anhand einer Verbindung bestimmt.

ein 3-Keton müsste z. B. die gleiche zusätzliche chemische Verschiebung aufweisen wie ein 7-Keton. Wieweit diese Forderung erfüllt ist, zeigt Tab. 5, in der die sich entsprechenden Substituenten und Doppelbindungen und die durch sie bewirkten

¹⁶) J. I. MUSHER, J. Amer. chem. Soc. 83, 1146 (1961).

¹⁷) Diese Forderung gilt auch für Funktionen im Ring A bezüglich einer Spiegelebene durch die Kohlenstoffatome 3, 10 und 19, und entsprechend im Ring B.

zusätzlichen chemischen Verschiebungen einander gegenübergestellt sind. Interessant ist das Verhalten des 3- und des 7-Ketons im Vergleich zu den entsprechenden konjugierten Ketonen. Eine Deutungsmöglichkeit für diesen Effekt bietet die BUCKING-HAM'sche Theorie¹⁸), die nachweist, dass die durch polare Gruppen in Nachbarteilen der Molekel oder in Lösungsmittelmolekeln induzierte Polarisation zu einer zusätzlichen chemischen Verschiebung führen kann.

Abschliessend lässt sich feststellen, dass, wie zu erwarten war, die Einflüsse der Funktionen an den Ringen A, B und C am stärksten sind. BeimAufklären unbekannter Strukturen kann daher in erster Näherung in manchen Fällen auf eine Kenntnis der Substituenten am Ring D verzichtet werden.

Diese Untersuchung konnte nur durchgeführt werden dank der Mithilfe von Herrn Prof. T. REICHSTEIN (Universität Basel), der uns in grosszügiger Weise seine Steroid-Sammlung zur Verfügung stellte und uns in verschiedenen Diskussionen wertvolle Hinweise gab, wofür wir ihm zu grossem Dank verpflichtet sind. Wir danken ferner den Chemikern der Forschungslaboratorien der pharmazeutischen Abteilung der CIBA AG für die Bereitstellung der Substanzen. Besondern Dank schulden wir den Herren Dres. K. HEUSLER, J. KALVODA und J. SCHMIDLIN für verschiedene Diskussionen und die tatkräftige Unterstützung dieser Arbeit sowie den Herren E. LÄNGIN und E. ENG für die Aufnahme der Spektren.

SUMMARY

The proton NMR spectra of 160 known steroids have been measured as 0.1 molar solutions in deutero-chloroform. It is shown that the influences of the different substituents and double bonds on the position of the C-19-methyl-signal are additive to a high approximation. Most chemical shifts can therefore be predicted with an accuracy of \pm 0.01 ppm. A table of the additional chemical shifts as a function of the nature and position of the substituents is given, which permits the calculation of the chemical shift of the 19-hydrogen atoms of unknown steroids.

CIBA AKTIENGESELLSCHAFT, Basel Physikalisches Laboratorium

¹⁸) A. D. BUCKINGHAM, Canad. J. Chemistry 38, 300 (1960).

172. Mikrosomale Tyrosinase aus Puppen der Drosophila melanogaster

Kurze Mitteilung

von E. Jenny, A. Hicklin und F. Leuthardt

(6. VI. 61)

Tyrosinase, auch Phenolase oder Polyphenoloxydase genannt, ist ein im Tier- und Pflanzenreich weit verbreitetes Enzym. Es katalysiert die Umwandlung von Monophenolen zu Diphenolen (Kresolaseaktivität) und die Oxydation der Diphenole zu den entsprechenden Chinonen (Catecholaseaktivität)¹). Je nach der phyllogenetischen Stufe erfüllen diese Chinone verschiedene Aufgaben²). Bei Insekten sind Pigmentie-

¹) A. B. LERNER, Advances Enzymol. 14, 73 (1953).

²) H. S. MASON, Advances Enzymol. 16, 105 (1955).